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An Investigation of Interfacial Reactions

in Metal Matrix Composites §
by

Sung Chor Chin
Marc H. Richman

Abstract

The interfacial reaction between fibre and matrix materials was studied

in G/A% and FP/Mg composite systems. An intermediate layer of reaction
product was necessary to prevent debonding in G/A2 composites during cooling

from the fabrication temperature. The intermediate layer was identified as

the spinel MgA2,0, in the FP/Mg composite and the effect of this intermediate
layer was to provide good bonding and load transfer from matrix to fibre and
also to form bridges (necks) cross-linking the fibres. The spinel also acted
as a diffusion barrier to reduce the role of fibre degradation by interfacial

reaction at service temperatures.
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1. Introduction

The advantageous emnloyment of metal matrix fibrous composites as
modern structural materials applications is dependent on the combination
of low density and high stiffness which can be achieved consistently in
the production and fabrication of such continuous fibrous composites into

the shapes and sizes specified for these applications.

Composite materials which are candidates for future utilization are
magnesium and magnesium allovs reinforced with graphite, boron, or such
dispersed phases as FP (A2203) and SiC. There is also the possibility that
aluminum/boron ccmposites might be suitable for light weight, high strength

and stiffness applications. The graphite and boron have very low densities

so that the composites fabricated with either of these dispersed phases
would have lower specific weights than composites of the same matrix material
fabricated with such higher density dispersed phases as FP or SiC. The low
density of magnesium and magnesium alloys render these metals and alloys

exceptionally well suited for these applications.

All of the factors tend to indicate that the above composite materials
would all be very well suited for light weight, high stiffness structural
applications. Before that decision can be established, some potential
problem areas must be considered. The present research program is intended

to examine in detail the interfacial reactions in metal matrix composites.

2, Scope of Research

The fabrication of composite materials using matrices of metals and
alloys and containing dispersed fibres (either oriented or randomly dis-
persed) or needles (whiskers) requires the use of elevated temperatures

during the production of the basic materials or during the application

or stiffening elements of composite to ordinary non-composite engineering




alloys already fabricated. This heating during fabrication or application

of the composite or the heat treatment of the composite to achieve the
optimum properties if a heat-treatable matrix alloy is used can result in
interfacial reactions between the matrix and the dispersed phase, between
any intermediates and either the matrix or the dispersed phase. These
interfacial reactions result in the formation of reaction products and the
depletion of either matrix or dispersed phase or intermediate. In this
way, the resultant properties of the composite may depend greatly on the
nature and extent of the reactions which have occurred at the interface
throughout the composite material. In addition, the coefficients of
thermal expansion of the matrix and of the dispersed phase are quite
dissimilar in most of the systems being contemplated for helicopter
applications. This means that composites fabricated at elevated tempera-
tures will either have built-in stresses (residual stresses) or internal
cracking or delaminations due to this disparity of coefficient of thermal
expansion. The application of composites to an engineering structure by
such methods as hot pressing also will result in the same types of reactions
and thermal stresses or internal cracking or delaminations. The transverse
properties of oriented fibre reinforced composites are often severely

limited by these phenomena.

The present research effort was to have been devoted to studying inter-
facial reactions in FP (Alzos)/magnesium and SiC/aluminum. The objective of
this research was to provide new understanding of fibre/matrix interfacial
reactions in these composites. This new understanding would then provide a
basis for optimizing the properties of composite systems for use in Army
helicopter drive systems and bridging through control and minimization of

any damaging fibre/matrix interfacial reactions.

To investigate and understand the interfacial reactions which may occur
during fabrication and use of the FP/Mg and SiC/Af composite systems,

continuous fibres in well-characterized metal matrices were used.

The as-fabricated composites were to be examined using such techniques
as optical mectallography, scanning clcctron microscopy, electron microprobe
analysis, clectron fractography, x-ray diffraction, etc. This would estab-

lish the microstructurc and distribution of the constitucnts of the composite
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and any products of interfacial reactions which had occurred during fabrica-

tion.

After fabrication, the composites were to be heated to service tempera-

tures for specific times and evaluated as to microstructure and interfacial

reaction products.

The strength and stiffness of as-fabricated and post-fabrication heat

treated composites were to have been measured and the anisotropy determined.

Then, using the data as generated, the interfacial reactions would be
controlled to provide those products at the interface which improved pro-

perties.

3. Limitations on Research Scope

The original contract called for two composite systems to be studied
during the contract year, i.e., the FP/Mg and the SiC/Af systems. Orders
for the FP/Mg composite material were placed with DuPont and a two-three
week shipment was offered. The material was delayed due to a backlog in
the DuPont production schedule and, despite the efforts of the AMMRC
to increase the priority attached to this order, the material was not

received until five months after the date of the order.
The source of the SiC/AL was to have been AVCO (Lowell}.

Production problems at AVCO were encountered and, despite further »
efforts of both Brown University personnel and AMMRC, no SiC/Af% has been i
provided to this date.

Efforts to obtain SiC/AL from other personnel and research groups at

AMMRC were made, but no material was found to be available.

The initial delay in obtaining both composite materials prompted an
initial investigation into interfacial reactions in some G/Af provided by
AMMRC. This work was then superceded at the end of December 1980 when the

FP/Mg from DuPont was received and work was immediately commenced on that

material. The unavailability of SiC/Af resulted in the inability of the




present research investigation to look into the interfacial reactions in
that composite system and the delay in determining availability prevented
any substitute composite from being included in the program because of

expected delays in obtaining any substitute material system.

The result of the supply problems and delivery problems was that the
scope of the present research effort was limited to studying the interfacial
reactions which had occurred during fabrication and during post-fabrication
heat treatment in the FP/Mg svstem with some examination of the interfacial
reactions which had occurred during fabrication in the G/AL system. No
work was performed on the SiC/AL system and no time was available for

mechanical strength and stiffness testing of the FP/Mg composite material.

During the initial period when receipt of the composites was anticipated,
literature review was accomplished and calculations were made of the effect
of the mismatch of coefficients of thermal expansion between the matrix and
dispersed phase on the generation of residual stresses, the onset of yielding
and debonding in generalized composites to help explain the effects of
fabrication and post-fabrication heating in the real systems and also the

anisotropy of strength in real systems.

In addition, during the waiting period, theoretical calculations were
made of the interfacial reactions which would, most probably, be encountered

in the systems to be studied in this research program.

4. Review of Literature

The interface of a fibre reinforced metal matrix composite material is
defined as the area of separation between fibre and the metal matrix. It
is known that most failures of metal matrix composites had been attributed
to weakness at the fibre/matrix interface. Many times debonding occurs at
the interfacc when the compositc is stressed well below its theoretical
(ROM) strength. This phenomenon occurs most frequently in non-metal,
ceramic fibre/metal matrix composite systems. In theory, the interface
must satisfy the following conditions:

1. There must be thermodynamic wetting beiween the fibre
and matrix.
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2. The bonding forces between matrix and the fibre must
act over an area large enough to insure load transfer
from matrix to fibre.

(92}

Bonds formed must be strong and stable for long times
at service temperatures.

4. Any reaction zone formed at the interface between the
fibre and the matrix must be small in thickncss compared
to the fibre diameter.

5. The coefficient of thermal expansion of the metal
matrix and the fibre materials must be sufficiently
similar that thermal stresces will not be great
enough to destroy or weaken the bond at the inter-
face.

Even though much is known about why and how most unsuccessful fibre
reinforced metal matrix composites have failed, little is known about how
to prevent it. For example, most ceramic materials are not wetted by
metals and often a non-uniform or porous interface is formed which results
in interfacial failures. Ceramics that are wetted by metals often form a
brittle intermetallic compound at the interface which has proven to be
detrimental to mechanical properties. The coefficient of thermal expan-
sion of ceramics is usually lower than that of metals, and residual
stresses at the fibre/matrix interface results. This can cause yielding

and debonding after fabrication and failure during service conditions.

One of the early succcssful fibre reinforced metal matrix composites
was silicon carbide-coated boron fibre reinforced aluminum matrix composites.
Observations of composite fracture surfaces had indicated the considerable
strength of the fibre-matrix interfacc and had shown that interfacial failure
was seldom a mode of compositc fracture. Prewo and McCarthy (1) stated
that the rcasons for the high interfacial strength was related to the
intimate contact established betwezen matrix and fibre during composite
fabrication. This interfacial beoad was established without the generation
of observable reaction products. It was also shown that the boron fibre
was structurcless while the silicon carbide, deposited as a diffusion
barrier layer, was madc up of many elongated crystallinc regions whose
primary axes were pcrpendicular to the boron-silicon carbide interface.

The surface structurc of this coating was related to the growth pattern

e = P
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of the silicon carbide and provided a serrated surface which was replicated

to the finest observable detail by the aluminum matrix.

More recently successful compesites were made of graphite or polyv-
crystalline alumina (FP) fibres in aluminun. These materials were fabri-
cated by the Sodium PMrocess. Composites with full theoretical strength
were prepared by means of this process if rayon-base graphite, Panl
graphite, or FP fibres were used. The sodium process for the preparation
of fibre-reinforced aluminum composites consisted first of wetting the
fibres with molten sodium, then forming protective intermetallic compound
fibre coatings by one or more other molten metals, and finally by displac-
ing all metal except the fibre coating with a final bath of molten aluminum
or aluminum alloy. Goddard (2) found that liquid sodium penetrated graphite
by intergranular diffusion or by intercalation in which such compounds as
C64Na may have formed. Sodium acted as a protective and wettable coating
on the fibres. The second bath usually consisted of molten tin, its major
function being to dissolve and displace the sodium. The tin was miscible
with both sodium and aluminum, whereas the sodium was totally immiscible
with aluminum. Since sodium and tin form a series of intermetallic com-
pounds, less than 1.5% magnesium was added to either the tin or sodium
bath. This resulted in the formation of MgZSn which acted to stabilize
the sodium-rich fibre coating. The final aluminum bath dissolved and

\ displaced the tin, which was possible becausc of the complete miscibility
of these metals. The metallurgical reactions that occurred at the fibre-
matrix interface during this process provide insight into potential methods
of forming other protective fibre coatings suitable for other fibre-matrix

composite systems.

In 1978, a new and successful composite consisting of Alumina (FP)
fibre in magnesium or aluminum was introduced by DuPont(3,4). Thesc
composites were fabricated without any intcrmediate wetting agent. Tensile
tests of these composite materials up to fracture indicated that the inter-
faces produced were strong cnough to permit the transfer of loads at strengths
. in the order of 250 to 350 MpPa. Levi, Abbaschian and Mchrabian (5) studied
' interfacial reactions during fabrication of FP/aluminum alloy and observed that

interactions in the AL-Cu system produced a distinctive accumulation of
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copper around the fibres in the form of discrete particles of a Cu-rich

phase which disappeared with heat treatment. It was suggested that CuM.ZO4
may have been present along with a—A.Q.ZO3 and possibly CuA?.2 in the interaction
zone, Interactions between the A2203 fibres and the A2-Mg alloy matrix
resulted in the formation of a Mg-rich region around the fibres which was
retained during heat treatment. This was attributed to the presence of
MgAf.zO4 and MgO at the fibre boundary in addition to a-Azzos. Changes in
appearance of the interaction zone were also observed for different mag-
nesium contents in the alloy. Additions of small amounts of magnesium to

the AZ-Cu alloy significantly reduced the extent of the interaction observed.
Both magnesium and copper enrichments around the fibre were detected in this
staze, and these zones of enrichment were still present after hesat treatment.
Exptrinental observations indicated that MgA2,0,, a-A2,0; and possibly
CuA:.zo4 coexisted in the interfacial zone. The results of this study (5)
suggested that a compound of the aluminate type may form on the fibre surface
and provide the required bond with the matrix. This reaction would be

enhanced in the presence of oxygen during the fabrication step.

From these previous studies it can be seen that an interface formed
by intimate contact between the fibre and metal matrix, an infinitely
thin wettable intermediate layer, or simply a thin stable intermetallic

layer, can produce a strong interface and high composite strength.

5. Experimental Procedurc

The general procedure for examining the various specimens of composite

materials consisted of:

1. Sectioning - cutting the samples out of the bulk as-received
material in the proper shape and orientation so that they
could be studied in detail by the procedures dectailed below.

2. Mounting - the sections cut from the bulk material were
mounted in epoxy cold-mounting material so that they could
be prepared metallographically.

3. Metallographic preparation - the as-mounted samples were
carried through various grits of polishing matcrial from
the 320 and 600 silicon carbide papers to 6 micron, 1

micron, 0.25 micron diamond papers (prepared in the
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laboratory), and then to standard diamond polishing wheels

of 6 micron and 0.25 micron sizes.

4. Optical examination using standard metallographic micro-
scopes to observe the uniformity of the dispersion of the
fibres and fibre bundles in the matrix and other unusual
features which might influence the properties of the
composite.

5. Sputtering of conductive material (gold) onto the surface
of the mount but not onto the polished surface of the
composite specimen in the mount.

6. Scanning Electron Microscopy using an AMR 1000A scanning
electron microscope in the secondary electron mode.

7. Electron microprobe analysis of the composite specimens
using EDAX analysis (Energy Dispersive) in the AMR 1000A
and wave length dispersive analysis (in some cases) using
an ARL - SEM/EMX to determine concentration gradients
across the fibre/matrix interfaces. (All probe analyses
were performed on samples coated with carbon and not gold.)

8. X-ray diffraction of bulk as-received samples of composite
materials to determine the phases and compounds present in
the composites.

9. X-ray diffraction of powdered composites (ground) and
prepared with an internal reference standard for determi-
nation of the concentration of interfacial reaction

products in the composite.

The procedurcs described above were utilized for examination of the
composite materials in their as-received (i.e., as-fabricated) conditions
and again after theyv had been subjected to heating for various lengths
of time at a seclected temperature. Since many of the above procedural
steps are standard within metallurgical laboratories, there is no need to
discuss them in detail here. Those procedures which are not standard will

be discussed in detail.

The scctioning of the FP/Mg required special procedures before it could

be accomplished with no damage to the specimens. The very hard nature of
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the alumina (FP) fibres coupled with the soft and low melting point magnesium
matrix caused such heating when cutting with the usual equipment at room

. temperature or when cutting with water cooled diamond cut off wheels that

i the samples became hot and deformed while thz cutting surfaces became loaded

with magnesium and reduced the cutting efficiency.

After attempting various techniques, a simple hacksaw was found to be
effective when the specimen was held in a vise and the entire vise and
hacksaw were maintained in an ice-filled bath. This allowed sections to be
cut by hand with no appreciable heating or plastic deformation to the

specimens.

The use of diamond paste in metallographic preparation and the use of
higs2r than normal pressures and high speeds on the diamond polishing wheels
was because of the difference between the hardness of the dispersed FP and
the magnesium matrix. By using diamond wheels at high speed and with higher
than normal pressures, it was possible to prepare metallographic samples
which did not have the magnesium removed at a greater rate than the alumina

and resultant height changes on the plane of polish.

The usual method of preparation of non-conductive specimens for scanning
electron microscopy is to coat them with gold or carbon. In the instant case,
the mounted and polished specimens were comprised of a conductive matrix but

' a non-conductive aluminum oxide and a non-conductive epoxy mount. The small
size of the fibres prevented their non-conducting nature from causing charge
build up, but the surface of the mount was large in area relative to the
specimen within the mount and that non-conducting areca had to be made
conductive. To do this, a tape was placed over the mount and the specimen
within the mount. Thec tape was then cut with a surgical scalpel so that the
tape could be pecled away from the epoxy surface while the tape still pro-
tected the specimen surface. This sample was then sputtered with gold. The
tape was then removed from the specimen surface and the mount placed on the

; stage of the scanning electron microscope and cxamined.

! Once the scanning elcctron microscopy had been performed, it was

necessary to coat the specimen surface with carbon using an evaporator

before microprobe analysis could be performed. The specimen was polished




so that the gold was removed from the epoxy surface and then the carbon layer

was deposited over the mount and specimen areas. The sample was then returned
to the AMR 1000A for the energy dispersive analysis and determination of con-

centration gradients or to the ARL-SEM/EMX for the wave length dispersive

analysis.

For the quantitative determination of the concentration of interfacial
reaction product present in the sample, it was necessary to employ powder
x-tay diffraction methods. The composite was first taken to whatever stage
of treatment, i.e., as-fabricated or heat treated post fabrication, and then
ground using a mortar and pestle. An internal standard of silicon powder
was then added in measured quantity to the specimen of ground composite.
This sample was then made into an acetone glycolphthalate slurry and
deposited onto a glass microscope slide for x-ray diffraction analysis.

The peak areas of heat treated samples are compared with those of non-heat
treated samples and the comparison of the areas of the silicon peaks in both
samples allows a quantitative determination to be made of the reaction product

concentration.

To determine the effect of post-fabrication heat treatment on the nature
and extent of the interfacial reaction, the FP/Mg composite material was
heated at a temperature of 350°C (to simulate the temperature of the heli-
copter transmission) for various lengths of time ranging from 1 hour to
500 hours. The samples were cut from the as-fabricated material and heated
in air for the required length of time and then cooled to room temperature.
Once heat treated, the samples were subjected to the examination procedures

detailed above.
6. Results

(a) Residual Stress Calculations

The mismatch between the coefficients of thermal expansion of the dis-
persed phase and the matrix in a composite material are such that when a
bond is achieved between the two constituents at the fabrication tempera-
ture, cooling to room temperature can result in the gencration of residual

stresses, vielding of the matrix and possible dcbonding between the matrix

and fibres.
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Using the mathematical models and formulas developed by Burgreen (6),
various residual stresses which develop on cooling a composite with a 50 v/o

dispersed phase over a temperature interval AT, are given by the relation

(a) - 0p) (4T)

P =
BN e O
E2 2G2 E1
01r = radial stress on fibre = -P
O1¢ = tangential stress on fibre = +P
Sop = radial stress on matrix = -P

Ose = tangential stress on matrix = 3P

where
1 refers to fibre
2 refers to matrix
E = Elastic modulus
G = Shear modulus
a = coefficient of thermal expansion
AT = Temperature change

{b) Thermodynamic Calculations

In considering the possible interfacial reactions which could possibly
occur in the systems FP/Mg, the Gibbs Free Energies of formation of the
various possible reaction products were considered for all possible compounds

involving aluminum, magnesium and oxygen.

The compound with the largest negative Gibbs Free Energy of Formation
at the fabrication tempcratures was thc compound MgAQZOJ. This is a spinel
structure and is similar in crystallography and chemistry to the spinel
postulated by Richman, Levitt and DiCesare (7) as being the product of the

interfacial reaction in the G/Mg system, that spinel being MgTiZO4.

The verification of the existence of the spinel, MgAﬁ,Od. in the as-
fabricated and heat treated post fabrication samples of FP/Mg composite

was provided by x-ray diffraction and will be described below.

SR A WM A W T o e v 5
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(c) G/Af Composite System

e e - Ameem -t e -

Oblique sections of G/A2 were mounted and metallographically polished.
Upon examination in the scanning electron microscope, it was determined that
' where there was good bonding between the graphite fibre and the matrix there
L : was, indeed, an intermediate layer which was in good contact with the matrix
_ and with the fibre. Where the fibres had debonded from the matrix, there

: was no intermediate layer between them,

F A typical —canning electron micrograph of the intermediate layer between
u ' a graphite fibre and the aluminum matrix is shown in Figure 1 at 68,000X.
While there is some gap just below the fibre in this micrograph, the bonding
;. elsewhere is very good. A debonded fibre from the same sample is shown at
29,000X in Figure 2. This fibre has completely separated from the matrix and
there is also no intermediate layer of interfacial reaction product serving to

provide the bond to both the matrix and the fibre in this case.

To prove that the intermediate layer is different in chemical composition

and in crystal structure from the matrix, a sample area was selected where

i Rl

there was an intermediate layer (see Figure 3). This sample was then etched

with Kellers reagent and then re-examined in the SEM. A similar area of

i

the specimen is shown in Figure 4 and the attack of the etchant on the matrix
has resulted only in small pits being formed whereas in the intermediate

) layer, the etchant has severely attacked the interfacial reaction procuct.

ba i el

(d) FP/Mg Composite ¢

The DuPont FP/Mg composite was sectioned and polishing procedures were
developed to reveal the microstructure and fine structure (in the SEM).
Normal polishing methods employing either aluminum oxide abrasives result

in the matrix being polished away while the fibres remain raised. A

b -t ok o 0 g

typical low power scanning electron micrograph of this is shown in Figure 5.
1 Normal pressure and spced using diamond polishing whecels also results in

: leaving the fibres raised high above the polished-away matrix.

Using the special polishing procedures described above, it was possible

Lk et aadiig Be 2 g desic)

to achieve a polish with the matrix and fibres being in the same plane.
This is shown in thc scanning electron micrograph of Figure 6. An optical

micrograph of this same specimen is shown in Figure 7.
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The optical micrograph (Figure 7) shows that the FP fibres are not
completely uniform in their dispersion in the magnesium matrix. There are ‘
many cases where two fibres are actually in contact with one another (see
Figure 5) and this contact can be seen in even greater detail in Figure 8
which shows the neck formed between two fibres and their interfacial reac-

tion layers. This interface overlap is also shown in Figure 9.

The intermediate layer on one of the fibres in Figure 9 is relatively
free of pores while the other intermediate laver is quite porous. This
porosity of the interfacial reaction product is shown in more detail in
Figure 10. A similar juxtaposition of a porous and non-porous intermediate

layer pair is also visible in the micrograph of Figure 8.

In order to determine the concentration gradient from the fibre through
the intermediate layer, it was possible to perform electron microbeam probe
analysis (EDAX) on the specimens and to plot the concentration gradient.

The exact positions on the surface of the specimen where the counts were

taken is indicated on the micrographs by white dots.

In Figure 11 is shown a scanning electron micrograph of a fibre section
with its intermediate layer and the adjoining matrix. The white dots
represent spots at which the concentration gradient was measured quantita-
tively. In Figure 12, a set of concentration measurement points runs
across the fibre and intermediate layer from matrix to matrix. The graph
of magnesium and aluminum contents across this line of measuring points

is presented in Figure 13.

This graph shows that there is a peak in the aluminum concentration
within the intermediate layer and an abrupt drop-off of aluminum content in
the matrix. The magnesium content is seen to rise slowly in the intermediate

layer.

Another concentration gradient was plotted across two fibres, their
intermediate layers, and the neck formed betwcen those two intermediate
layers. The positions of the mcasuring points are shown in the micrograph

of Figurc 14 and the actual profiles in Figure 15.

The samples of FP/Mg werc then heat treated for various lengths of

time at 350°C and cooled to room temperature. The scanning electron
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micrographs of specimens of composite after varying times at temperature are
shown in Figures 16 through 20. While many areas were studied and micro-
graphs were taken from each time, representative micrographs are presented

here.

The as-fabricated composite is shown in the scanning electron micrograph
of Figure 16. After one hour, the structure is shown in Figure 17, after
three hours in Figure 18, after fifty hours in Figure 19, and after 100 hours

in Figure 20.

The intermediate layver increases only slightly (as evidenced by examina-

tion and measurement of the micrographs) as a function of the heating time.

For this reason x-ray diffraction methods were developed to show quantitatively
the change in concentration of the interfacial reaction product. The initial
x-ray diffraction runs indicate that there is, indeed, an increase of the

interfacial reaction product as a function of time at temperature.

The nature of the intermediate layer is such that it acts to retard the

diffusion of magnesium through the spinel crystal structure and thus prevent

any further reduction of the fibre diameter (with consequent loss of strength
of the composite). The intermediate also acts to form a bridge (by neck
formation) between adjacent fibres in the matrix and, thus, establish a cross

linking btetween the fibres.
7. Conclusions

(1) Interfacial reactions are necessary to promote bonding and wetting !

between fibres and matrix in G/Af and FP/Mg composites. i

(2) In G/AZ composites, where no intermediate layer is formed, debonding :
of the fibres occurs during cooling from the fabrication temperature. Where
an internediate layer is formed, bonding from fibre to intermediate layer
to matrix resists dcbonding under residual stresses and allows load transfer

on application of service conditions. A

(3) Residual stresses, yiclding and debonding can occur on cooling from

the fabrication temperature to room temperaturc due to the mismatch of co-

o

efficients of thermal expansion. This is further enhanced by post-fabrication

heat treatment or scrvice at clevated temperatures.
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(4) The interfacial reaction product in FP/Mg composites is the spinel
MgAL,0, .
(5) The intermediate laver of MgAz,O4 acts as a diffusion barrier and

retards further reaction and growth of this layer.

(6) The intermediate layer of MgA2204 forms bridges or necks between
those fibres in close juxtaposition to one another, which bridging should

provide for improved transverse strength.

(7) There is an increase in the thickness of the intermediate layer of
interfacial reaction product as a function of time at temperature (post-

fabrication) which can be determined by x-ray diffraction studies.

(8) The mechanical properties of FP/Mg composites are derived from

the interfacial reaction product forming between fibres and matrix.
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Figure 1.

Figure 2.

Graphite Fibre in Aluminum Matrix with Intermediate Layer of
Interfacial Reaction Product.

Graphite Fibre in Aluminum Matrix. No intermediate layer is
present and fibre has debonded from matrix.
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Figure 3. Intermediate Layer Between Graphite Fibre and Aluminum Matrix.

Figure 4. Effect of Kellers Etch on AL Matrix and Intermediate Layer.
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Figure 5. FP/Mg after Polishing with AL,0
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Figure 6. FP/Mg After Polishing with Diamond of High Speed and High Pressure.
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Optical Micrograph of FP/Mg.

Figure 7.

Interfacial Reaction Product Formed in FP/Mg During Fabrication.

Figure 8.




Figure 9. Intermediate Layer Bridging During Fabrication in FP/Mg.

Figure 10. Porous Naturc of Interfacial Reaction Product in FP/Mg.
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Figure 11. Microprobe Analysis Taken of Spots Shown on SEM of Fibre and
Intermediate Layer in FP/Mg.

Figure 12. Another Set of Microprobe Spots in FP/Mg.
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Figure 13. Concentration Gradients of Mg and A% from Probe Trace of
Figure 12.

Figure 14. Probe Trace Across Bridge Between Two Fibres of FP/Mg.




Figure 15. Concentration Gradients of Mg and AfL from Probe Trace of
Figure 14.

Figure 16. As-Fabricated FP/Mg.




Figure 17.

Figure 18.

FP/Mg Heated for 3 hours at 350°C.




Figure 19. FP/Mg Heated for 50 hours at 350 C.

T

Figure 20. FP/Mg Heated for 100 hours at 350°C.
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